Transforming tree phenotyping

From shared datasets to fake datasets: an update on deep learning work at Scion

Nicolò Camarretta

Remote Sensing cluster group - 13 November 2023

Unlocking AI through Shared Datasets: Dataset partnerships for AI in forestry

Nicolò Camarretta, Melanie Palmer, Ben Steer, Robin Hartley, Grant Pearse

Background and motivation

<u>Rapid</u> acceleration in 'deep learning' (AI):

- Computer vision largely solved
- Works well on geospatial imagery too: UAV, aerial
 & satellite
- General rule: If you can identify it, an algorithm can too ...with a large enough dataset (and the right model)

Imagenet: 1.4 M images in 1000 classes

ChatGPT \triangle Examples Capabilities Limitations Explain quantum computing in Remembers what user said May occasionally generate simple terms' earlier in the conversation incorrect informatio Got any creative ideas for a 10 Allows user to provide follow May occasionally produce year old's hirthday? up corrections harmful instructions or biased content How do I make an HTTP rained to decline inappropriat Limited knowledge of world and events after 2021

MNIST: 70,000 digits

Deep learning – forestry applications

- Forestry companies are rapidly waking up to the potential for geospatial AI
- Scion AI research programme
- Deep learning + UAV imagery = \bigcirc
 - Seedling detection
 - Stand boundaries
 - Tree counting (post thinning)
 - Cutover mapping
 - Species ID
 - Canopy segmentation
 - 3D deep learning (stem, branch, etc) LiDAR application

Transforming

tree phenotyping

Deep learning – seedling detection 🌗 🥝 scion

Deep Learning – stand boundary mapping

- Simple RGB imagery from a fixed wing aircraft is an important data source
- RGB used as input to deep learning to detect and delineate forest boundaries
- Recently used to detect damage from cyclone Gabrielle

https://www.smartforest.cloud/

Deep learning – nursery phenotyping

- Early-crop phenotyping
- Deep learning detection and segmentation
- 20 images = 86% detection accuracy on test set

Deep Learning – Challenges

Barriers to uptake

- New skill, new processes, new concepts
- Terminology, jargon
- Rethink business practices
- Hard to get started
- The datasets

(a) Object Classification

(c) Semantic Segmentation

Image: Liu et al. 2020 https://doi.org/10.1007/s11263-019-01247-4

(b) Generic Object Detection (Bounding Box)

Why focus on datasets?

"[T]he "dirty secret" of artificial intelligence is that getting the software to work well in the real world requires a large amount of high-quality data."

- Alexander Wang, Founder & CEO Scale AI in an interview with *Fortune*

ADE20K: 25,000 densely annotated images

MS COCO: 164K in 80 categories

ImageNet 1.4 M images in 1000 classes

The dataset is often the hardest part

- Data acquisition is costly (UAV, plane, satellite)
- Data labelling can be very costly
- Significant time investment
- Quality is key
- It is an investment
- but...

Reasons to collaborate:

- Build large, diverse, high-quality datasets
 <u>key to generalization</u>
- Rapid dataset creation
- Efficient use of time and data
 - Focus data labelling effort on harder areas
 - Target collection of new data
- Scion's knowledge sharing: get it right, the first time
- Reduced costs (using existing data imagery & GIS)

Dataset diversity is a good thing

Why use Zenodo?

- Safe your research is stored safely for the future in CERN's Data Centre for as long as CERN exists.
- Trusted built and operated by CERN and OpenAIRE to ensure that everyone can join in Open Science.
- Citeable every upload is assigned a Digital Object Identifier (DOI), to make them citable and trackable.
- No waiting time Uploads are made available online as soon as you hit publish, and your DOI is registered within seconds.
- Open or closed Share e.g. anonymized clinical trial data with only medical professionals via our restricted access mode.
- Versioning Easily update your dataset with our versioning feature.
- GitHub integration Easily preserve your GitHub repository in Zenodo.
- Usage statistics All uploads display standards compliant usage statistics

Why deliver the dataset?

- Having the dataset lets you train your own model
 - Continually improve and update
 - Power to train your own model
 - Combine data with commercial tools
 - Value-add over duplicate dataset building

Why deliver the model?

- Becoming easier to deploy AI models
- Accessible tools (*e.g.*, ArcGIS Pro)
- Build familiarity with AI/ML in forestry

We are looking for partners

Please, get in contact!

Transforming tree phenotyping

A pipeline for generating high-fidelity synthetic point clouds for use in forest phenotyping

Scion Team:

Grant Pearse, Celine Mercier, Tancred Frickey, Grant Evans, Sadeepa Jayathunga, Robin Hartley, Elizaveta Graevskaya.

University of Sydney Team: Ahalya Ravendran and Mitch Bryson

Our Goal

Develop a state-of-the-art phenotyping programme for radiata pine.

- Decision support system matching genotype to current and <u>future</u> climate
- Drought tolerance, disease resistance and carbon storage
- In-situ phenotyping pipeline that takes advantage of existing breeding trials
 - Partnership with Radiata Pine Breeding Company

Transforming Tree Phenotyping MBIE funded programme - NZ\$9 million over 5 years Programme lead: Michael Watt

- 1. Genetics: GxE
- 2. Cultural and native species phenotyping (Lania Holt)
- 3. Hyperspectral and thermal analysis for phenotyping (Michael Watt)
- 4. Advanced Single Tree Characterisation (Robin Hartley)

4. Advanced Single Tree Characterisation

Extract structural attributes from breeding trials and mature stands using laser scanning.

- Structural selection criteria e.g., branch size, inter-whorl distance, branch angle (damage susceptibility).
- Carbon and stem volume are also important traits

How to extract these structural attributes at scale from point clouds?

We use a two-pronged approach:

- 1. Quantitative Structural Models (QSM)
- 2. 3D deep learning on the point cloud

QSM for tree characterisation from 3D data

- Quantitative structure models (QSM)
 - Rule-based point cloud processing
 - Extract and reconstruct stem, branches etc.
 - Excellent results but one-by-one
- Scale and level of detail are **big** challenges
- Getting good results but it is a highly parameterized workflow

Hartley, R., Jayathunga, S., Massam, P., Davidson, S., De Silva, D., Estarija, H., Wuraola, A., Pearse, G. (2021). *Capture and extraction of phenotypic traits from novel high-density point clouds.* Resilient Forests Tech Note

Transforming tree phenotyping SCION

3D Deep learning for tree characterisation

- FORInstance Dataset: Stefano Puliti -NIBIO
 - Benchmark dataset for ML classification of point clouds
 - Boreal to Tropical forest types
 - Manual annotation of thousands of trees
 - Hard work, expensive and some uncertainty in the labelling
- Is there another way?
- Synthetic data
- Common in other domains

Hartley, R., Jayathunga, S., Massam, P., Davidson, S., De Silva, D., Estarija, H., Wuraola, A., Pearse, G. (2021). *Capture and extraction of phenotypic traits from novel high-density point clouds*. Resilient Forests Tech Note

Synthetic data generation

High-fidelity pipeline

- "Easy" to make nice-looking fake trees but they are not rooted in biological simulators
- Work with Singapore A*STAR Institute
- Closing the loop is hard as these trees are for video games and the parameters are only loosely connected to biology
- Lots of interaction between settings
- Current approach is to train a model to predict the parameters needed to make synthetic trees that look like real trees
- Add some jitter to the settings for variation

Simulate trees based on parameters that generate realistic trees

Train 3D segmentation model on simulated data

Segment real trees and use as a reference for the simulator settings

> Transforming tree phenotyping

Two approaches for synthetic datasets creation

- High fidelity
- Naïve approach: copy-paste
- Computationally intensive

- Platform, scanner and trajectory settings dynamically controlled through HELIOS++ Python bindings
- Allows very detailed or very realistic point clouds
- Scaling up to stands (with needles) is extremely computationally demanding (2TB RAM)

Ground Truth Trees

Airborne laser scanning (ALS)

Mobile ground-based scanning (MLS)

Mature Radiata Pine Trees Tumut NSW, Australia

Recreational Forest, Rotorua, New Zealand

Learning-based Segmentation using Synthetic Helios Trees

We use PointNet++ architecture^[1] for individual tree segmentation

[1] Qi, C.R., Yi, L., Su, H. and Guibas, L.J., 2017. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. NeurIPS, 30.

Quantitative Analysis - Results

Segmentation performance on Radiata Pine trees from Tumut (Australia)

Model Training	Training on Real Dataset	Synthetic High- fidelity Training	Helios-backend Synthetic Training
Test IoU foliage	0.971	0.838	<u>0.945</u>
Test IoU stem	0.528	0.120	<u>0.247</u>

Segmentation performance on Radiata Pine trees from Scion Recreational Park (New Zealand)

Model Training	Training on Real Dataset	Synthetic High- fidelity Training	Helion-backend Synthetic Training
Test IoU _{foliage}	0.714	<u>0.648</u>	0.623
Test IoU _{stem}	0.633	0.452	<u>0.572</u>

IoU = Intersection over Union (a measure of accuracy)

Results

- Quantitative Structural Modelling (QSM) results
- Strong results qualitative assessment as QSM is tuned to targets (DBH, volume etc.)

Next-steps

- Unify benchmarking and datasets for 3D DL and QSM
- Exploring the potential Sim2Real data gaps
- Scale-up synthetic datasets
- Test alternative deep learning architectures
- Test hybrid QSM-3D DL approach

Acknowledgements

We would like to thank

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT for funding this research

for collaboration on this programme and access to trials.

- Damien Sellier from Scion for his assistance with developing the synthetic tree pipeline
- Peter Massam, Honey Jane Estarija, Warren Yorston and David Cajes from Scion for field data captures.
- Timberlands Ltd., Manulife Forest Management (NZ) Ltd and New Zealand Forest Managers for access to their forests.
- Interpine for additional data captures.

9-13 SEPTEMBER 2024 ROTORUA, NEW ZEALAND

forestsat.com/2024

Nicolò Camarretta

nicolo.camarretta@scionresearch.com

www.scionresearch.com

13 November 2023

